from mistralai import Mistral from openai import OpenAI import google.generativeai as genai import anthropic import ollama class AI: @staticmethod def process_local(model, messages, return_class, access_token): stream = ollama.chat( model=model, messages=messages, stream=True, options={"temperature": 0.5}, ) with return_class.ai_response_lock: return_class.ai_response[access_token] = "" for chunk in stream: with return_class.ai_response_lock: return_class.ai_response[access_token] += chunk['message']['content'] @staticmethod def process_mistralai(model, messages, return_class, access_token, api_key): client = Mistral(api_key=api_key) stream_response = client.chat.stream( model=model, messages=messages ) with return_class.ai_response_lock: return_class.ai_response[access_token] = "" for chunk in stream_response: with return_class.ai_response_lock: return_class.ai_response[access_token] += chunk.data.choices[0].delta.content @staticmethod def process_openai(model, messages, return_class, access_token, api_key): client = OpenAI(api_key=api_key) stream_response = client.chat.completions.create( model=model, messages=messages, stream=True ) with return_class.ai_response_lock: return_class.ai_response[access_token] = "" for chunk in stream_response: with return_class.ai_response_lock: return_class.ai_response[access_token] += chunk.choices[0].delta.content @staticmethod def process_anthropic(model, messages, return_class, access_token, api_key): client = anthropic.Anthropic(api_key=api_key) with return_class.ai_response_lock: return_class.ai_response[access_token] = "" with client.messages.stream( max_tokens=1024, model=model, messages=messages, ) as stream: for text in stream.text_stream: with return_class.ai_response_lock: return_class.ai_response[access_token] += text @staticmethod def process_google(model, messages, return_class, access_token, api_key): message = messages[-1]['content'] messages.pop() system = None if messages and messages[0]['role'] == 'system': system = messages[0]['content'] messages.pop(0) for msg in messages: msg['parts'] = msg.pop('content') for msg in messages: if msg['role'] == 'assistant': msg['role'] = 'model' genai.configure(api_key=api_key) model = genai.GenerativeModel(model) chat = model.start_chat( system_instruction=system, history=messages ) response = chat.send_message(message, stream=True) for chunk in response: return_class.ai_response[access_token] += chunk.text