ai-virtual-assistant/py/api.py
2024-09-16 15:14:24 +02:00

53 lines
1.9 KiB
Python

import requests
import json
from transformers import AutoTokenizer, LlamaForCausalLM
class API:
# This method processes a message via transformers. (NOT FINISHED!)
@staticmethod
def process_text_transformers(prompt, model):
model = LlamaForCausalLM.from_pretrained(model)
tokenizer = AutoTokenizer.from_pretrained(model)
inputs = tokenizer(prompt, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=30)
return tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# This method processes a message via ollama
@staticmethod
def process_text_local(prompt, model):
ollama_url = "http://localhost:11434"
response = requests.post(
f"{ollama_url}/api/generate", json={"model": model, "prompt": prompt}
)
if response.status_code == 200:
response_data = []
for line in response.iter_lines():
line_decoded = line.decode("utf-8")
line_raw = json.loads(line_decoded)
response_data.append(line_raw["response"])
final_response = "".join(response_data)
return final_response
else:
return "Error: " + response.text
# This method sends a message to a certain AI.
def send_message(self, message, model):
if model == 1:
answer = self.process_text_local(message, "phi3.5")
elif model == 2:
answer = self.process_text_local(message, "gemma2:2b")
elif model == 3:
answer = self.process_text_local(message, "qwen2:0.5b")
elif model == 4:
answer = self.process_text_local(message, "codegemma:2b")
elif model == 5:
answer = self.process_text_transformers(message, "meta-llama/Meta-Llama-3.1-8B")
else:
return "Invalid choice"
return answer