ai-virtual-assistant/py/voice_recognition.py

61 lines
1.8 KiB
Python
Raw Permalink Normal View History

2024-09-18 09:18:50 +02:00
#pip install faster-whisper
from api import API
import os
import wave
from faster_whisper import WhisperModel
import pyaudio
2024-09-16 14:38:45 +02:00
2024-09-18 09:18:50 +02:00
def transcribe_chunk(model, file_path):
print("transcribing...")
segments, _ = model.transcribe(file_path)
transcription = ""
for segment in segments:
transcription += segment.text + " "
return transcription.strip()
2024-09-16 14:38:45 +02:00
2024-09-18 09:18:50 +02:00
#Record voice
#chunk_length = duration to record in seconds
def record_chunk(p, stream, file_path, chunk_length=2):
frames=[]
for _ in range(0, int(16000/1024 * chunk_length)):
data = stream.read(1024)
frames.append(data)
2024-09-16 14:28:41 +02:00
2024-09-18 09:18:50 +02:00
wf = wave.open(file_path, 'wb')
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(16000)
wf.writeframes(b''.join(frames))
wf.close()
def listen():
#model settings (tiny, base, small, medium, large)
model_size = "medium"
#what should it run on (cpu or cuda for gpu)
model = WhisperModel(model_size, device="cpu", compute_type="int8")
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate = 16000, input = True, frames_per_buffer=1024)
try:
while True:
print("Recording...")
# CHANGE TEMP FILE PATH
chunk_file="temp_chunk.wav"
record_chunk(p, stream, chunk_file)
transcription = transcribe_chunk(model, chunk_file)
print(transcription)
try:
return transcription
except Exception as e:
return "ERROR"
finally:
if os.path.exists(chunk_file):
os.remove(chunk_file)
break
except KeyboardInterrupt:
print("Stopping...")
finally:
stream.stop_stream()
stream.close()
p.terminate()