interstellar_ai/py/ai.py
sageTheDM 91353bd051 main (#137)
Reviewed-on: https://interstellardevelopment.org/code/code/React-Group/interstellar_ai/pulls/137
Reviewed-by: Patrick <patrick_pluto@noreply.localhost>
Co-authored-by: sageTheDM <info@photofuel.tech>
Co-committed-by: sageTheDM <info@photofuel.tech>
2024-10-11 10:18:33 +02:00

108 lines
4.3 KiB
Python

from mistralai import Mistral
from openai import OpenAI
import google.generativeai as genai
import anthropic
import ollama
class AI:
@staticmethod
def process_local(model, messages, return_class, access_token):
"""Process chat messages using the Ollama model locally."""
# Stream the chat response from the Ollama model
stream = ollama.chat(
model=model,
messages=messages,
stream=True,
options={"temperature": 0.5},
)
# Initialize the AI response for the given access token
with return_class.ai_response_lock:
return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream:
with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk["message"]["content"]
@staticmethod
def process_mistralai(model, messages, return_class, access_token, api_key):
"""Process chat messages using the Mistral AI model."""
client = Mistral(api_key=api_key)
# Stream the chat response from the Mistral model
stream_response = client.chat.stream(model=model, messages=messages)
# Initialize the AI response for the given access token
with return_class.ai_response_lock:
return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream_response:
with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk.data.choices[0].delta.content
@staticmethod
def process_openai(model, messages, return_class, access_token, api_key):
"""Process chat messages using the OpenAI model."""
client = OpenAI(api_key=api_key)
# Stream the chat response from the OpenAI model
stream_response = client.chat.completions.create(
model=model, messages=messages, stream=True
)
# Initialize the AI response for the given access token
with return_class.ai_response_lock:
return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream_response:
with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk.choices[0].delta.content
@staticmethod
def process_anthropic(model, messages, return_class, access_token, api_key):
"""Process chat messages using the Anthropic model."""
client = anthropic.Anthropic(api_key=api_key)
# Initialize the AI response for the given access token
with return_class.ai_response_lock:
return_class.ai_response[access_token] = ""
# Stream the chat response from the Anthropic model
with client.messages.stream(
max_tokens=1024,
model=model,
messages=messages,
) as stream:
for text in stream.text_stream:
with return_class.ai_response_lock:
return_class.ai_response[access_token] += text
@staticmethod
def process_google(model, messages, return_class, access_token, api_key):
"""Process chat messages using the Google Generative AI model."""
message = messages[-1]["content"] # Get the latest message content
messages.pop() # Remove the latest message from the list
# Prepare messages for the Google Generative AI format
for msg in messages:
msg["parts"] = msg.pop()["content"]
# Change 'assistant' role to 'model' for compatibility
for msg in messages:
if msg["role"] == "assistant":
msg["role"] = "model"
# Configure the Google Generative AI client
genai.configure(api_key=api_key)
# Start a chat session with the specified model and message history
model = genai.GenerativeModel(model)
chat = model.start_chat(history=messages)
# Send the message and stream the response
response = chat.send_message(message, stream=True)
for chunk in response:
return_class.ai_response[access_token] += chunk.text