ai.py comments

This commit is contained in:
sageTheDM 2024-10-11 10:11:23 +02:00
parent 8a20c3f22f
commit 4debcc6fad

View file

@ -4,10 +4,11 @@ import google.generativeai as genai
import anthropic import anthropic
import ollama import ollama
class AI: class AI:
@staticmethod @staticmethod
def process_local(model, messages, return_class, access_token): def process_local(model, messages, return_class, access_token):
"""Process chat messages using the Ollama model locally."""
# Stream the chat response from the Ollama model
stream = ollama.chat( stream = ollama.chat(
model=model, model=model,
messages=messages, messages=messages,
@ -15,50 +16,61 @@ class AI:
options={"temperature": 0.5}, options={"temperature": 0.5},
) )
# Initialize the AI response for the given access token
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] = "" return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream: for chunk in stream:
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk["message"]["content"] return_class.ai_response[access_token] += chunk["message"]["content"]
@staticmethod @staticmethod
def process_mistralai(model, messages, return_class, access_token, api_key): def process_mistralai(model, messages, return_class, access_token, api_key):
"""Process chat messages using the Mistral AI model."""
client = Mistral(api_key=api_key) client = Mistral(api_key=api_key)
# Stream the chat response from the Mistral model
stream_response = client.chat.stream(model=model, messages=messages) stream_response = client.chat.stream(model=model, messages=messages)
# Initialize the AI response for the given access token
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] = "" return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream_response: for chunk in stream_response:
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk.data.choices[ return_class.ai_response[access_token] += chunk.data.choices[0].delta.content
0
].delta.content
@staticmethod @staticmethod
def process_openai(model, messages, return_class, access_token, api_key): def process_openai(model, messages, return_class, access_token, api_key):
"""Process chat messages using the OpenAI model."""
client = OpenAI(api_key=api_key) client = OpenAI(api_key=api_key)
# Stream the chat response from the OpenAI model
stream_response = client.chat.completions.create( stream_response = client.chat.completions.create(
model=model, messages=messages, stream=True model=model, messages=messages, stream=True
) )
# Initialize the AI response for the given access token
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] = "" return_class.ai_response[access_token] = ""
# Collect the response chunks and append to the response for the given access token
for chunk in stream_response: for chunk in stream_response:
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] += chunk.choices[0].delta.content return_class.ai_response[access_token] += chunk.choices[0].delta.content
@staticmethod @staticmethod
def process_anthropic(model, messages, return_class, access_token, api_key): def process_anthropic(model, messages, return_class, access_token, api_key):
"""Process chat messages using the Anthropic model."""
client = anthropic.Anthropic(api_key=api_key) client = anthropic.Anthropic(api_key=api_key)
# Initialize the AI response for the given access token
with return_class.ai_response_lock: with return_class.ai_response_lock:
return_class.ai_response[access_token] = "" return_class.ai_response[access_token] = ""
# Stream the chat response from the Anthropic model
with client.messages.stream( with client.messages.stream(
max_tokens=1024, max_tokens=1024,
model=model, model=model,
@ -70,24 +82,27 @@ class AI:
@staticmethod @staticmethod
def process_google(model, messages, return_class, access_token, api_key): def process_google(model, messages, return_class, access_token, api_key):
message = messages[-1]["content"] """Process chat messages using the Google Generative AI model."""
messages.pop() message = messages[-1]["content"] # Get the latest message content
messages.pop() # Remove the latest message from the list
# Prepare messages for the Google Generative AI format
for msg in messages: for msg in messages:
msg["parts"] = msg.pop()["content"] msg["parts"] = msg.pop()["content"]
# Change 'assistant' role to 'model' for compatibility
for msg in messages: for msg in messages:
if msg["role"] == "assistant": if msg["role"] == "assistant":
msg["role"] = "model" msg["role"] = "model"
# Configure the Google Generative AI client
genai.configure(api_key=api_key) genai.configure(api_key=api_key)
# Start a chat session with the specified model and message history
model = genai.GenerativeModel(model) model = genai.GenerativeModel(model)
chat = model.start_chat(history=messages)
chat = model.start_chat( # Send the message and stream the response
history=messages,
)
response = chat.send_message(message, stream=True) response = chat.send_message(message, stream=True)
for chunk in response: for chunk in response:
return_class.ai_response[access_token] += chunk.text return_class.ai_response[access_token] += chunk.text