voice recognition with whisper

This commit is contained in:
YasinOnm08 2024-09-18 09:18:50 +02:00
parent c85e981fce
commit 06f263b417

View file

@ -1,31 +1,61 @@
import speech_recognition as sr #pip install faster-whisper
from api import API
import os
import wave
from faster_whisper import WhisperModel
import pyaudio
class Voice: #create Class def transcribe_chunk(model, file_path):
@staticmethod print("transcribing...")
def listen(): #define function listen() segments, _ = model.transcribe(file_path)
recognizer = sr.Recognizer() transcription = ""
for segment in segments:
transcription += segment.text + " "
return transcription.strip()
try: #Record voice
with sr.Microphone() as source: #chunk_length = duration to record in seconds
print("Adjusting for ambient noise...") def record_chunk(p, stream, file_path, chunk_length=2):
recognizer.adjust_for_ambient_noise(source, duration=0.5) #listen to surrounding for .5sec to adjust backgroundnoise frames=[]
print("Listening...") for _ in range(0, int(16000/1024 * chunk_length)):
audio_data = recognizer.listen(source) #listen to user until user stops speaking data = stream.read(1024)
print("Audio captured") frames.append(data)
try:
text = recognizer.recognize_sphinx(audio_data) # Using Sphinx convert audio to text (also works offline)
#if any Exceptions or Errors eccur => return ERROR
except sr.UnknownValueError:
text = "ERROR"
except sr.RequestError as e:
text = "ERROR"
except sr.RequestError as e: wf = wave.open(file_path, 'wb')
text = "ERROR" wf.setnchannels(1)
except sr.UnknownValueError: wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
text = "ERROR" wf.setframerate(16000)
except Exception as e: wf.writeframes(b''.join(frames))
text = "ERROR" wf.close()
return text
def listen():
#model settings (tiny, base, small, medium, large)
model_size = "medium"
#what should it run on (cpu or cuda for gpu)
model = WhisperModel(model_size, device="cpu", compute_type="int8")
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate = 16000, input = True, frames_per_buffer=1024)
try:
while True:
print("Recording...")
# CHANGE TEMP FILE PATH
chunk_file="temp_chunk.wav"
record_chunk(p, stream, chunk_file)
transcription = transcribe_chunk(model, chunk_file)
print(transcription)
try:
return transcription
except Exception as e:
return "ERROR"
finally:
if os.path.exists(chunk_file):
os.remove(chunk_file)
break
except KeyboardInterrupt:
print("Stopping...")
finally:
stream.stop_stream()
stream.close()
p.terminate()